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ABSTRACT

The theory of compressed sensing has shown that sparse sig-
nals can be reconstructed exactly from remarkably few mea-
surements. In this paper we consider a nonconvex extension,
where the !1 norm of the basis pursuit algorithm is replaced
with the !p norm, for p < 1. In the context of sparse error
correction, we perform numerical experiments that show that
for a fixed number of measurements, errors of larger support
can be corrected in the nonconvex case. We also provide a
theoretical justification for why this should be so.

Index Terms— Signal reconstruction, error correction,
minimization methods, linear codes, random codes.

1. INTRODUCTION

Recent papers [1, 2] have introduced the concept of com-
pressed sensing. The basic principle is that sparse or com-
pressible signals can be reconstructed from a limited (or com-
pressed) number of random projections. A few of the many
potential applications are medical image reconstruction [3],
image acquisition [4], and sensor networks [5].

The first algorithm presented in this context is known as
basis pursuit [6]. Let Φ be an M × N measurement matrix,
and Φf the vector of M measurements of an N -dimensional
signal f . The reconstructed signal u∗ is the minimizer of the
!1 norm, subject to the data:

min
u
‖u‖1, subject to Φu = Φf. (1)

A remarkable result from [7] is that if the rows of Φ are
randomly chosen, standard-normally distributed vectors, there
is a constant C such that if the support of f has size K and
M < CK log(K/N), then the solution to (1) will be exactly
u∗ = f with overwhelming probability. The required C de-
pends on the desired probability of success, which in any case
tends to one as N →∞.

Variants of this result include Φ being a random Fourier
submatrix, or having values ±1/

√
n with equal probability.

Also, f can be sparse with respect to any basis, with u re-
placed with Ψu for suitable unitary Ψ.

A family of iterative greedy algorithms [8, 9, 10] have
been shown to enjoy a similar exact reconstruction property,

generally with less computational complexity. However, these
algorithms require more measurements for exact reconstruc-
tion than the basis pursuit method.

In this paper, we take the opposite approach, and show
that a nonconvex variant of basis pursuit will produce exact
reconstruction with fewer measurements. Specifically, we re-
place the !1 norm with the !p norm, where 0 < p < 1 (in
which case ‖ · ‖p isn’t actually a norm, though d(x, y) =
‖x− y‖p

p is a metric):

min
u
‖u‖p

p, subject to Φu = Φf. (2)

That fewer measurements was required for exact reconstruc-
tion than when p = 1 was demonstrated by substantial nu-
merical experiments in [11], with random (and nonrandom)
Fourier measurements. In this paper, we consider the con-
text of error correction, and our measurements will be random
Gaussian projections. In Section 2, in addition to a geometric
explanation of the efficacy of p < 1, we provide a theoret-
ical result (based on one from [12]) justifying the increased
likelihood of exact reconstruction. In Section 3, numerical
experiments will show that using p < 1 allows perfect recov-
ery from the corruption of a greater number of entries.

2. ERROR CORRECTION

We consider the abstract encryption framework described in
[12]. Let A be an m × n matrix, with m > n. If A has full
rank, we can regard it as a linear block cipher, with a plaintext
f ∈ Rn encrypted as Af . We suppose the ciphertext Af is
corrupted by an error vector e ∈ Rm, with the property that
the support of e is at most r: ‖e‖0 ≤ r. Given the corrupted
ciphertext y = Af + e, under what circumstances can we
recover Af (and hence f ) exactly?

This problem can be recast into the form of (2) by the use
of a matrix B whose kernel is the range of A. Then By =
B(Af + e) = Be. We attempt to reconstruct e from the
measurement vector By(= Be), by solving (2):

min
d
‖d‖p

p, subject to Bd = Be. (3)

If the unique minimizer is d = e, then we will have the error
vector e, from which we can recover the plaintext from Af =
y − e.
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Fig. 1. Exact reconstruction occurs if the constraint plane
meets the !p sphere containing e only at e. For sparse e, this
condition is more likely for p < 1 if one only need consider
points near e.

Still following [12], the substitution d = y − Af̃ yields
the unconstrained problem

min
f̃
‖y −Af̃‖p

p, (4)

as B(y − Af̃) = By = Be for all f̃ ∈ Rn. Our numeri-
cal experiments in Section 3 will consist of solving (4) and
comparing the minimizer with f .

The geometry of (3) is depicted in Figure 1. Exact recon-
struction corresponds to e being the only point of intersection
of the affine space Bd = Be and the !p-sphere containing e.
If e is sparse, this will be true for many B, seemingly to the
same degree whether p = 1 or p < 1. This changes, however,
if a solution of (3) must also be close to e. The smaller p is,
and the closer a solution to (3) must be to e, the more likely
that a given choice of B will yield exact reconstruction. And
it is the sparsity of e that will contribute to the requirement
that a minimizer be close to e.

This brings us to the concept of an approximate S-
restricted isometry, as introduced in [13]. For a k×m matrix
B and T ⊂ {1, . . . ,m}, let BT be the matrix consisting of
the columns bj of B for j ∈ T . (We will use similar notation
for vectors, with uT (t) = u(t) if t ∈ T and 0 otherwise.) For
each number S, define the S-restricted isometry constant of
B to be the smallest δS ≥ 0 such that for all subsets T with
|T | ≤ S and all c ∈ R|T |,

(1− δS)‖c‖22 ≤ ‖BT c‖22 ≤ (1 + δS)‖c‖22. (5)

Thus if T0 is the support of e, Bd = Be, and d is supported
on T0, we will have ‖d − e‖22 ≤ ‖B(d − e)‖22/(1 − δr) =
0, provided δr < 1. However, there is no guarantee that a
minimizer of (3) will be supported on T0, or even be sparse.

Working in tandem with (5) will be the following obser-
vation, essentially from [14]. Let d be a solution of (3), and
let h = d− e. By the triangle inequality for ‖ · ‖p

p, we have

|‖e‖p
p − ‖ − hT0‖p

p| ≤ ‖e + hT0‖p
p. (6)

Since T0 ∩ T c
0 = Ø, we have

‖e‖p
p − ‖hT0‖p

p + ‖hT c
0
‖p

p ≤ ‖e + hT0 + hT c
0
‖p

p

= ‖e + h‖p
p = ‖d‖p

p ≤ ‖e‖p
p,

(7)

the last inequality holding because d solves (3). The result is
that

‖hT c
0
‖p

p ≤ ‖hT0‖p
p. (8)

In other words, although d need not be sparse, a bound exists
on the portion of d outside the support of e (note that dT c

0
=

hT c
0

). The more sparse e is, the stronger (8) is.
The final piece of this picture is the following result. It

quantifies the restricted isometry condition necessary for ex-
act reconstruction, and generalizes and improves for p < 1
the corresponding result of [12].

Theorem 2.1. Let the block cipher A be an m × n matrix
with m > n. Let f ∈ Rn be a plaintext, e ∈ Rm an error
vector, and let r = ‖e‖0 be the size of the support of e. Let
B be a matrix whose kernel is the range of A. Let p ∈ (0, 1],
a = 3p/(2−p). Suppose that B satisfies

δar + 3δ(a+1)r < 2. (9)

Then the unique minimizer of (3) is exactly e, and we can
recover the plaintext f exactly from the corrupted ciphertext
y = Af + e as the unique minimizer of (4).

For p = 1, this is exactly as appears in [12]. For a given
B, the required restricted isometry condition will hold for
larger values of r when p < 1. We thus can expect to be
able to correct errors of larger support in this case.

It is also shown in [12] that in the case of random, Gaus-
sian ciphers, the condition of Theorem 2.1 holds (for p = 1,
a fortiori for p < 1) with overwhelming probability, provided
r < ρm for some constant ρ. The value of ρ given is very far
from sharp, however.

Proof of Theorem 2.1. The proof generally follows the lines
of [12], but with a simplification. (Specifically, equation (2.2)
therein is not required.) As above, we consider a solution d of
(3) (that such exists is geometrically obvious). Let h = d− e;
we wish to show that h = 0. Let T0 be the support of e. Let
M = ar. Arrange the elements of T c

0 in order of decreasing
magnitude and partition into T c

0 = T1 ∪ T2 ∪ . . .∪ TL, where
each Tj has M elements (except possibly TL). We do this
because the restricted isometry condition gives us control over
the action of B on small sets. Denote T01 = T0 ∪ T1. We



decompose Bh:

0 = ‖Bd−Be‖2 = ‖Bh‖2 =
∥∥∥∥BT01hT01 +

L∑

j=2

BTj hTj

∥∥∥∥
2

≥ ‖BT01hT01‖2 −
∥∥∥∥

L∑

j=2

BTj hTj

∥∥∥∥
2

≥ ‖BT01hT01‖2 −
L∑

j=2

‖BTj hTj‖2

≥
√

1− δM+r‖hT01‖2 −
√

1 + δM

L∑

j=2

‖hTj‖2.

(10)

Now we need to control the size of the ‖hTj‖2. We aim to use
(8), for which we must estimate the !2 norm in terms of the
!p norm. For each t ∈ Tj and s ∈ Tj−1, |h(t)| ≤ |h(s)|, so
that

|h(t)|p ≤ ‖hTj−1‖p
p/M. (11)

Then
‖hTj‖22 ≤ M‖hTj−1‖2p/M2/p, (12)

so that
L∑

j=2

‖hTj‖2 ≤
( L∑

j=1

‖hTj‖p

)
/M1/p−1/2

≤ ‖hT c
0
‖p/M

1/p−1/2,

(13)

where we have used the reverse triangle inequality property
of the !p norm for p ≤ 1. Now we may use (8), and then
convert back from !p to !2 by means of Hölder’s inequality:

‖hT0‖p
p =

∑

t∈T0

|h(t)|p · 1 ≤
(

∑

T0

|h(t)|2
) p

2
(

∑

T0

1

)1− p
2

= ‖hT0‖
p
2|T0|1−p/2.

(14)

Combining, we obtain

L∑

j=2

‖hTj‖2 ≤ ‖hT0‖p/M
1/p−1/2 ≤ ‖hT0‖2

(
|T0|
M

) 1
p−

1
2

= ‖hT0‖2/
√

3.
(15)

Putting together with (10), we have

0 ≥
√

1− δM+r‖hT01‖2 −
√

1 + δM‖hT0‖2/
√

3

≥
(√

1− δM+r −
√

1 + δM/
√

3
)
‖hT01‖2.

(16)

The condition (9) of the theorem ensures that the scalar factor
is positive, so hT01 = 0. In particular, hT0 = 0; then h = 0
follows from (8).

3. NUMERICAL EXPERIMENTS

We present the results of numerical experiments investigating
the ability of (4) to reconstruct a plaintext from a corrupted
ciphertext. We adopt the approach of [12], to facilitate di-
rect comparison. We used n = 128, and both m = 256 and
m = 512. For each m, we used 20 different values of r,
chosen as a percentage of m. For each value of m and r,
the following was repeated 100 times. The elements of the
m × n cipher A and the n × 1 plaintext f were randomly
chosen from the standard normal distribution. The r entries
to be corrupted were randomly chosen, and the correspond-
ing values of the error vector e were chosen from the standard
normal distribution. We let y = Af + e, and computed the
minimizer f∗ of (4), for each p ∈ {0.1, 0.2, . . . , 1}. The re-
construction was deemed exact if every entry of |f∗ − f | was
less than 10−6; for p < 1, such “exact” maximum residuals
were generally less than 10−13. Further iteration of the algo-
rithm below would generally reduce p = 1 residuals below
10−13 as well.

To compute the minimizer of (4), we used an algorithm
based on the lagged-diffusivity algorithm of Vogel and Oman
[15] for total-variation minimization. Consider the Euler-
Lagrange equation for (4):

AT |Af̃ − y|p−2(Af̃ − y) = 0. (17)

Given the nth iterate f̃n, we solve for the next iterate f̃n+1

by “lagging” the nonlinear terms in (17), resulting in a linear
equation:

AT |Af̃n − y|p−2Af̃n+1 = AT |Af̃n − y|p−2y. (18)

The iteration was begun with the least-squares solution (that
for p = 2). To avoid division by zero, |Af̃ − y| was approx-
imated by

(
(Af̃ − y)2 + ε

)1/2. The value of ε was initially
set to 1, and the minimizer computed. The process was then
iterated with ε 100 times smaller than the previous value, and
with the previous minimizer used as the initial iterate, a total
of 10 times. The entire process took approximately 9 seconds
on a 2.8 GHz processor for m = 512, 3 seconds for m = 256.

Results of the experiments are plotted in Figure 2. Call
the corruption rate ρ = r/m. For plaintext size n = 256
and p = 1, exact reconstruction occurred all 100 times for a
corruption rate of ρ ≤ 10%, and 99 times for ρ = 15%. Using
p = 0.9 gave exact reconstruction 100 times for ρ ≤ 15%
and 99 times for ρ = 17.5%. For p = 0.8 or less, exact
reconstruction always occurred for ρ ≤ 20%.

When the plaintext size was n = 512, exact reconstruc-
tion occurred always for p = 1 when ρ ≤ 32.5%, 99% of
the time for ρ = 35%. For p = 0.9, we had 100% exact
reconstruction for ρ ≤ 40%, and 99 times for ρ = 42.5%.
Decreasing p to 0.8 or 0.7 increased the corresponding values
of ρ to 42.5% and 45%. For p = 0.6 and 0.5, exact recon-
struction always occurred for ρ ≤ 45%. For p ≤ 0.4, this
happened for ρ ≤ 47.5%.



(a) m = 256

(b) m = 512

Fig. 2. Plots of observed frequency of exact reconstruction
versus sparsity of ciphertext errors, for values of p used in !p

minimization ranging from 1 (solid line, square marker) down
to 0.1 (solid line, ‘+’ marker; values from 0.9 to 0.2 are dotted
lines, from left to right). Even p = 0.9 shows substantial
improvement over p = 1. When m, the ciphertext size, is 256,
decreasing p from 1 to 0.8 or lower allows an additional 25
entries to be corrupted and still expect exact reconstruction of
the plaintext. For m = 512, 77 more entries can be corrupted
by decreasing p to 0.4 or lower.

Considering all observed probabilities of exact reconstruc-
tion, from the plots we see that even a decrease of p from 1
to 0.9 results in a substantial improvement. Decreasing p fur-
ther yields greater improvement, but by less and less as p gets
smaller.
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